Home > Data Analytics > AMI Data Applications

AMI Data Applications

AMI Deployment

Deployment Schedule

Taipower  has installed AMI meters for large (all extra-high-voltage and high-voltage) customers in 2013. The load structure of Taiwan's power system is mainly composed of large-scale (high-voltage) industrial and commercial users, and their power consumption is about 60%. For small (low-voltage) customers, Taipower plans to install up to two hundred thousand, one million and three million AMI meters in 2018, 2020 and 2024 respectively. The schedule was approved by Executive Yuan in September 2016. After finishing 3 million customers' AMI deployment in 2024, Taipower could handle around 81% of power usage information of Taiwan's power system.

●Deployment Schedule
Taipower conducted low voltage AMI smart meter deployment via separate tendering of meter, communication, and meter data management system. The current status of deployment is as shown below:

-Meter
The procurement of 200,000 units of low voltage AMI smart meters was completed in 2017. The accumulated installation of 230,000 smart meters was completed in 2018 and 1.09 million smart meters in 2020.

-Communication module
The procurement of 200,000 units of communication modules was completed in July 2018. The installation of 230,000 communication modules was completed in March 2019. In 2020, we have installed about 1 million communication modules. The total system connection rate between MDMS and smart meter is over 95%.

-Metering data management system
Metering data management system (MDMS) has been on-line system in 2020, and it can successfully collect and manage 1.2 million meters data.

System Architecture

The buildings in Taiwan are mostly apartments. In order to cope with the bottle neck of communication, the innovative pluggable dual-communication module has been launched. Route A can access the data or events from metering unit through P1 interface and communicate with head-end server through P3 interface (wide-area communication network). Each head-ends will send information to MDMS in Taipower through P6 interface. Two types of communication module (wireless Wi-SUN and wired PLC) have been applied to deal with different on-site situations. The modules are optional according to the communication quality test of concentrator.

On the other hand, Route B has been kept for offering an on-demand channel for customer to access meter data directly, which can open the probability of HEMS (Home Energy Management System) application. Wireless or wired type of communication module is also optional due to customers’ switchboard. Smart meter in AMI is not only a point of common coupling between customers and utilities, but also brings in new data applications through Route B (P2/P4).

●MDMS(Meter Data Management System)
Along with the schedule of AMI deployment, Taipower is planning to construct a MDMS (Meter Data Management System) which can accommodate with some millions of customers’ AMI data.

MDMS is extremely important in the architecture of AMI. It should be able to offer processed data, which is consistent and can be directly used by other applications, to make sure the applications can be integrated on the same basis. The repetitive data pre-processing work (ETL, Extract-Transform-Load) can also be avoided.

MDMS in Taipower is about to complete in 2021, which will lead to various applications on demand/distribution side, that accommodates renewable energy penetration and enable electricity trading for future deregulated market in Taiwan. Big-data applications focusing on meter data will also make great contribution on promoting sensational customer service and innovative business model.

MDMS(Meter Data Management System)

●AMI Application Blueprint

AMI Application Blueprint

Since the completion of the high-voltage AMI deployment in 2013, Taipower has developed related applications along with the historical data. However, Taipower is a regulated (vertical-integrated) utility, and the applications are usually separated by different departments. Through a comprehensive survey, that coordinates the stakeholders in Taipower, we proposed a blueprint of AMI data applications as the attached A3 map.

AMI architecture

The architecture focuses on 6 major topics, including AMI infrastructure, system improvement and refinement, refinement of power distribution, refinement of power sales business, refinement of demand side management and data integration application analysis. Each topic contains many subjects and items, which are categorized into three responsible groups to manage and control the schedules.

According to different icons, we can identify if the subject is for high-voltage customers or low-voltage; on-going or still planning, and the main stakeholders, utility, industry or customers.

Applications in Different Domains

The contents of AMI applications in 6 topics mentioned before (AMI infrastructure, system improvement and refinement, refinement of power distribution, refinement of power sales business, refinement of demand side management and data integration application analysis) are briefly explained as follows. The expected benefit s are attached at the bottom of this page (Related Pictures).

1. AMI Infrastructure

AMI Infrastructure

Installation of AMI infrastructure, including smart meter design, solution of communication portfolio, and the construction of MDMS, brings meter production, communication services, IT technology and related sectors a huge bussiness opportunity to join. These applications will profit to industries. Furthermore, the meter data can be useful for Taipower’s grid operation, also can help customers to underdtand their electricity consumption behaviors to do further applications.


2. System Improvement and Refinement

System Improvement and Refinement

This topic contains auxiliary service(operating reserve) provided by demand response; and the estimation of the generation of PV and wind turbine, etc. Monitoring distribution system to achieve direct/wheeling power supply metering and measuring is also included.

3. Refinement of Power Distribution

Refinement of Power Distribution

The main idea of this topic is about improving the safety and efficiency of distribution system, to strengthen distributed generation integration and relevant issues. 

For example, promoting the construction of distribution automation to help data collecting and monitoring. Using these data, predictive maintenance can be done for distributed transformers; also, the outage can be isolated by the automation system. On the other hand, the system operator can be quickly informed by smart meter event and check where the outage is located on distributed GIS system to shorten the restoration time. 

Combined feeder network data with MDMS, via the implement of storage system, makes renewable energy be perfectly integrated within distribution network to enable future as the VPP (Virtual Power Plant) application.

4. Refinement of Power Sales Business

Refinement of Power Sales Business

Based on AMI deployment, with remote communication, human resource can be saved from on-site meter data reading or restoration. AMI data can be visualized for customers to check their power usage information on-line, and the unusual power usage alarm can be provided. Big data and AI (Artificial Intelligence) technology, such as clustering, can be applied for business applications, help business department to do diversified management, offer better services to customers, increase customers’ satisfaction.

5. Refinement of Demand Side Management

Refinement of Demand Side Management

Relevant subjects of the structure including energy-saving services, such as promotion of ESCO (Energy Services Company) and HEMS; demand side management enhancement, using AMI data with big data analysis, assist DR programs and rate design applications.

6. Data Integration Application Analysis

Data Integration Application Analysis

Data integration should be generally managed by MDMS. While the data source is consistent, the applications are ensured being developed on the same basis. Data application can be applied to domains like grid operation, billing business, asset management and maintenance, etc. Combined with other external data or open data, such as weather information or economic indexes, the analytics application would be diversified, efficient and valuable.

Achievements

The section below will highlight some key subjects/items of research and development group as examples to illustrate the application contents of the plan. Every other application subject/item within the framework have been assigned to responsible departments for the administration, which are regularly tracked and controlled. 

1. CEMS (Community Energy Management System)
The introduction of CEMS can help to manage the energy usage inside a community effectively. With measuring and monitoring the instant power load for every responsible area, the system can calculate reduced demand potential immediately within the community to support overall load management and operation. 

In 2016, the Taiwan Power Research Institute of Taipower implemented the CEMS in the Shulin Campus. They can measure and record the power consumption of 12 buildings in the campus and manage the buildings in groups according to their electricity usage characteristics.

To achieve power usage visualization inside the campus, the project created a Web-based EMS operation interface for administers to manage power usage details and arrange settings. Besides, the project also set several In-Building Display (IBD) and App on mobile device for the users working there. Once the VEN (Virtual End Node, client of openADR2.0) receives a new DR event compatible with OpenADR 2.0 specification, the event detail information (start time, duration, effected items…) will be shown on IBDs to let users know.

The figure on the left shows one of the IBDs in Shulin Campus. The dashboard shows aggregated key information, such as instant total power demand, customer baseline load (CBL), the load and usage pattern in individual building, last auto-DR event result analysis and environment information (temperature, humidity…).

2. BEMS (Building Energy Management System)
CEMS focuses on the electricity balance management among buildings in the community, while BEMS focuses on the power management inside each building.

With checking the electrical loops and equipment inventory in the building, measurement and control elements are installed to master the real-time electricity usage. Besides, with the participation in DR programs of Taipower, users can reduce the peak load and get further rewards. 

To promote the concept of energy management from the company, TPRI implemented the BEMS in the buildings inside Taipower Fengshan Branch in 2017.  Through the developed IBD and mobile APP, workers there can know power demand need in different areas at the same time. The figure on the right shows a Web-based BEMS operating interface, helping the administrator to understand the real-time and predictive power consumption of each floor in the building. In addition, the website also provides other functions like historical record inquiry, real-time environmental information in the building, DR schedule setting and equipment management to help the administrator manage the power usage in the building and preset the strategy for coming ADR events.

In response to the energy-saving policy, electricity demand side management is promoted to government agencies for high priority. Bureau of Standards, Metrology and Inspection (BSMI) and Bureau of Foreign Trade (BOFT) are chosen to implement building energy management service first to let the power usage inside the buildings visualized and reduce the peak loads with the ADR mechanism. The figure shows the IBD set in the hall of BSMI. The upper field presents the information about the following DR event (time, duration, reduced load request, countdown to launch) to remind the users to prepare for that. The left line chart shows instant demand record for the whole and air-conditioners, contracted capacity, user baseline CBL (five-day average). The right side shows the electricity usage of each building, demand reduction potential, building environmental parameters (temperature and humidity…) as a reference for on-site workers. When the administrator finds out that the power demand is very close to the contract capacity, he can also adjust the AC power manually on the web to avoid the excessive use penalty.

3. HEMS (Home Energy Management System)

HEMS assists home members to master the electricity use inside the home. With the communication network technology, integration of AMI and HEMS and connection with energy-saving household appliances, HEMS can provide instant power usage information, manage and control appliances by intelligent schedule, analyze the power usage status on smart home platform, perform demand response request and energy management service functions. Taipower had set up a demo-room in Taipower Taipei City branch in 2017 to present the “smart home” concept in future life. The picture shows residents can get the energy information inside home by the dashboard (In-Home Display, IHD) including status of home appliances, household electricity demand, ADR execution details, solar power generation and energy storage status.

The Energy Bureau of MOEA had selected 1,000 households as demo sites to test the suitable communication combinations between AMI and HEMS through route B in 2018. The figure shows The AMI reading data are directly transmitted to the meter gateway inside home through route B module of a smart meter. Inside the house, home appliance is operated through the TaiSEIA communication protocol with HEMS. With the data collected, there may be more value-added services such as IHD and cloud APP so that residents can realize the power consumption information easily. Further HEMS technology and value-added business model will be carried out in the coming years.

4. Analysis of Demand-Bidding Participants Performance

Demand-Bidding program is one of the most effective DR programs of Taipower. However, the load reduction or even the transfer affects the accuracy of load forecasting. The analysis was done as a reference to system operators, so the expected load reduction or transfer can be considered and identified. It also provides system operator with better understanding of DR management. The graph shows the transfer effect from DR participants’ performance. The x-axis shows 48-hours timeline. During the event (D-day 15-17), the load reduction is obvious while transferred to the early morning of both D-day and the next day.

5. A Study on Real-Time Pricing (RTP) Pilot Plan

-The power supply is vital to the people's livelihood, industry and economic development. In recent years, due to the impact of non-nuclear homes, energy transformation and environmental issues, and the demand for electricity continues to grow, the power supply is tighter than in previous years. In order to maintain power supply stability and avoid power shortage crisis, in addition to continuing to reduce peak power consumption through the current various demand side management measures, Taipower has also developed innovative power pricing solutions with advanced metering infrastructure (AMI).

-Real-time pricing (RTP) is priced based on the marginal cost per hour. According to the hourly power supply cost and the actual operation of the unit on that day, the user will be notified of the hourly electricity price for the next day. This pricing method can induce users to change the power usage behavior, so as to reduce the peak power consumption and ensure a stable power supply.

-The project recruits high and low voltage users to participate in the RTP pilot plan, and builds a RTP website to provide users with electricity visualization, electricity cost trial and comparison and other rates. The test user can log in to the RTP website to check the electricity information and electricity fee immediately (about 1 hour ago) and compare it with other electricity price plans.

-The RTP pilot plan covers the summer and non-summer months, and analyzes the results of users' low-load effect and cost-effectiveness. Based on the cost-benefit analysis and user satisfaction survey results, the strategy of Taipower 's short-term, medium- and long-term promotion of RTP is proposed.

6. Potential Load Reduction Quantification of DR programs

The effectiveness of DR is decided by participants’ performance. Taipower uses ML (Machine Learning) and AI (Artificial Intelligence) technologies to estimate the amount of potential participants’ load reduction, which can help us to find the most wanted customers. After taking the experience and modeling technologies from previous result, we develop this analysis to precisely identify target customers with their reducible load.

The targeted customers with their individual profiles such as industry, location, contracted capacity and predictive load, etc. the result has been visualized as a dashboard to facilitating DR apartment for precision marketing.

7. Energy-saving Application

VPP energy-saving application effects are depending on field characteristics and manage strategies. In the case of Taipower demo project in Shulin Campus, the electricity expense in summer had decreased 7~10% after the CEMS was built.

In the project of BSMI and BOFT, after the system was created, the consumed electricity degrees decrease 6% in BOFT and decreases 10% in BSMI. Furthermore, the system did really benefit for demand control, preventing the violation of contract constraint.

8. Industrial Parks Power Usage Profiling

A descriptive statistics analysis was done for the pilot project of chosen industrial parks, the above figure illustrates an analysis result of the amount of power usage and users of different industries. More detailed cross-profiling has also been done, which takes feeder information into account. The analytics procedure is expected to duplicate to other industrial parks for investigating precise industrial features and development trend. A visualization map of all industrial parks can be done if all the data and locations(borders) were clearly defined.

9. Non-Intrusive Appliance Load Monitoring (NIALM)
This project applies the advanced Artificial Intelligence (AI) based Machine Learning (ML) theory to develop the Non-Intrusive Appliance Load Monitoring (NIALM) model which uses the minute and 15 minutes interval based active and reactive power provided by smart meter as learning patterns. The frequently used appliances as air conditioner, lighting, refrigerator, electric water heater, dehumidifier, and fan are tested in the laboratory house for evaluating the performance of NIALM model. The F-Score achieves 83%, which outperforms the published performance.

The NIALM model was also evaluated in 30 residentials for testing air conditioner and lighting, the average of F-Score achieves 85%, which also outperforms the latest domestic published performance.

By developing NIALM analysis technology, evaluating the performance in residentials and surveying the latest trend of NIALM applications, this project also proposes the business model of NIALM application, which includes the applications of demand side management, aging alarm for appliances, and home care for the elderly.

Open Data Platform of Government and Taipower

Taipower have already opened 134 data sets on National Development Council Open Data Platform for value added applications (https://data.gov.tw/) . In addition, we constructed an advanced verification platform to confirm the availability of related governance mechanism in 2018. Following plan will be organized to design an enterprise open data platform in 2019, which refers to the architecture of Green Button Platform, including open data in the utility. These data will be in line with information security and personal data protection law.

●Prospects
-Negawatt Trading

In the traditional electricity market structure, power companies are responsible for power generation and supply electricity to the consumers. To keep the balance, power plants need to generate electricity equals to online load in need. With the help of CEMS, BEMS, and HEMS technologies, the concept of Virtual Power Plant (VPP) is no longer out of reach. The fast machine computing and network communication shorten the reactive time on user side. By integrating demand response (DR), distributed energy resource (DER) like PV, wind turbine, energy storage battery, electric vehicle (EV) and other technologies, VPP on demand side can be regarded as a resource. The negawatt power provided by the user can also be added to an electricity market, bids with generators and diversifying power trade business models. With the help of rapid information flow, power flow is no longer just from grid to end users. Users can also sell their electricity capacity back to the power company to create a new cash flow market. Taipower is planning and preparing a route torward this innovative business and technology development.

-User Grouping Based on Seasonal Usage Pattern

Taipower’s deregulation process is around the corner, the retail business of sales department becomes urgent and critical. Thanks to the upcoming residential customer AMI installation, the discrimination among seasonal power usages would be feasible and beneficial.

The scatter-plot of electricity usage behaviors in different seasons, the research contents in the planning include:
-Find out the user's power usage model through summer/winter energy consumption analysis.
-Find out the different patterns of users through the clustering algorithm in advanced analysis.

The survey will be conducted upon data inflow from MDMS this year.

-Classification of Customers

Not only the power usage among different seasons is discriminable, but also the load profile for daily use is valuable for further e-commerce. Customers always have different behaviors. Load profile, NILM (Non-Intrusive Load Monitoring), or other methods can be used to survey typical type of customers, then utilities can provide various services. 
The graph show the specific user profile from a reference study result, Intensive study will be carried out according to the AMI’s growing data scope.

-Smart Home Monitoring and Care
In the future, Taipower is planning to provide family electric power visualization, interactive service, which combines HEMS & E-commerce application mentioned in the previous section. Users can immediately check and remotely control home electrical appliances based on IoT technology, including instant alert and remote participation. From on-line or short-term analysis processing, the customized application can retrieve abnormality messages of elders through electrical use records. Taipower has initiated a demo project testing portfolio of the technology and business model.